

Use native queries to perform bulk updates

www.thoughts-on-java.org

Bulk updates provide Performance benefits
With the standard JPA approach, you fetch an entity from the
database and call some setter methods to update it.

This requires at least 2 SQL statements for each entity and can create
performance issues if you work on a huge set of entities. It’s often a
lot faster to update all entities with one native UPDATE statement.

Problem 1: Outdated 1st level cache
Hibernate doesn’t know which records the native query updates and
can’t update or remove the corresponding entities from the first level
cache.

You either need to make sure that you didn’t fetch any entities that
will be affected by the UPDATE statement or remove these entities
from the cache yourself.

You can do this by calling the detach() method. But before you do
that, make sure to call the flush() method to write all changes to the
database.

em.createNativeQuery(

"UPDATE person p SET firstname = firstname || '-changed'")

.executeUpdate();

PersonEntity p = em.find(PersonEntity.class, 1L);

log.info("Detach PersonEntity");

em.flush();

em.detach(p);

em.createNativeQuery(

"UPDATE person p SET firstname = firstname || '-changed'")

.executeUpdate();

p = em.find(PersonEntity.class, 1L);

http://www.thoughts-on-java.org/

Use native queries to perform bulk updates

www.thoughts-on-java.org

Problem 2: Not part of the entity life cycle

The native UPDATE statement is executed in the database and
doesn’t use any entities. This provides performance benefits, but it
also avoids the execution of any entity lifecycle methods or entity
listeners.

If you use a framework like Hibernate Envers or implement any code
yourself that relies on lifecycle events, you have to either avoid native
UPDATE statements or implement the operations of your listeners
within this specific use case.

http://www.thoughts-on-java.org/

